EWD-LG-SJ3

$$\begin{bmatrix} -A \\ -B \\ -C \\ -D \\ -D \\ -A \\ -B \\ -D \end{bmatrix}$$

User's Guide $(V_{1.0})$

XIAN EXCELLENT ELECTROMECHANICAL CO., LTD

	1 Product Appearance and Type Nomination	 Page 3
	2. Installing Method and Working Principle	 Page 5
	3、Schematic Diagram of the Controller Appearance	 Page 6
	4. Schematic Diagram of the Sensor Appearance and Installing Method	 Page 7
Product Overview	A. Standard "Disc" type Intelligent Load Sensor	Page 8
	B. Standard Character " \pm "type Intelligent Tension Sensor	Page 9
	C. Standard "Convex" type Intelligent Stress Sensor	Pag 10
	D. Standard Character "" type Intelligent Load Sensor	Page 1
	5. Explanation of Terminals of the System Controller	 Page 1
	6 System Structure and Installation Schematic Diagram	 Page 1
	7、Install Method of Sensor and Controller	 Page 1
Installation &	8、System Adjustment and Explanation (Autotune)	 Page 1
Adjustment	①.Initialization: Selection of Compensating Method	 Page 1
	2.Lock the Dead Weight of the Car	 Page 2
	③.No Load Autotune Operation Mode	 Page 2
	④.Rated Load Autotune Operation Mode	 Page 2
Implication and	9. Adjustment of the System Parameters	 Page 2
Adjustment Method of	10, Explanation of the Meaning of Parameter P	 Page 2
the Operation		
Parameters		
Indiacting Code	11、Explanation of System Normal Operation Code	 Page 2
Indicating Code Explanation	12、Explanation of the Code of Other Operations and Fault	 Page 2
	13、Brief Analysis of Other Status	 Page 2
	14. How to repeat the Autotune operation for the system?	 Page 3
How To Do?	15. How to do Rated Load Autotune by adopting 20% rated load?	 Page 3

		0 0	8	1	
	16、How to do "Weight Setting" system	Autotune for EWD-GA Sensor?			Page 32
	17. How to Obtain the Product Version	on Code?			Page 32
System	18、 Main characteristics				Page 32
·	19、Technical Specifications				Page 33
Characteristics					
Promise					Page 34
Others					Page 35
Attached Drawings	[1], [2], [3]			Page 3	6,37,38

Caution: This system is applicable an elevator with fixed car platform. Before use, be sure to read the following sections carefully.

Note: Under any condition, our part is just responsible for the quality of product in the period of guarantee service.

Declaration: For the reason of technology advancement, our company reserves the right of improving product. As for the relevant technical parameters, Please refer to the technical handbook delivered with the product.

System Overview

1. Product Appearance and Type Nomination:

Sensor Appearance Image: Sensor of Division of Division

1) Sensor of EWD-GA/GB/GC/GD

			-				
			supplied with it is	8 meters			
Product	Ordering	EWD-GA	EWD-GB	EWD-GC	EWD-GD		
Naming	Туре						
	Sensor Type	"Disc" type Load	Character "王"type	"Convex" type Stress	Character """type		
		Sensor	Tension Sensor	Sensor	Load Sensor		
	Detailed	See Fig. [3A]	See Fig. [3B]	See Fig. [3C]	See Fig. [3D]		
	Explanation						
2)	2) Controller of EWD-LG-SJ3						
Instal	l at the rope		EWD-]	LG-SJ3			
hitch	of car top						
Applio	cation Range	Be applied to elevator of 1:1 roping drive with the rope hitch at the car top. The sensor uses 2 wires of the car traveling cable for serial communication with the controller.					
Controller Appearance See Fig.[2]for details			nction with remote				
Product	Ordering Type	EWD-LG-SJ3A	EWD-LG-SJ3B	EWD-LG-SJ3C	EWD-LG-SJ3D		

Naming	Assorted Sensor	EWD-GA	EWD-GB	EWD-GC	EWD-GD
3) Con	troller of EW	D-RLG-SJ3			
Instal	l at the rope		EWD-R	RLG-SJ3	
ł	nitch in				
mac	hine-room				
Applic	cation Range	**	-	ing drive with the	-
		machineroom.	There is an 8-met	er-long cable alo	ng with the
		sensor.			
C	ontroller				
Appearance					
			1	See Fig.[2]for deta	
Product	Ordering Type	EWD-RLG-SJ3A	EWD-RLG-SJ3B	EWD-RLG-SJ3C	EWD-RLG-SJ3D
Naming	Assorted Sensor	EWD-GA	EWD-GB	EWD-GC	EWD-GD

2. Installing Method and Working Principle of "EWD-LG-SJ3/RLG-SJ3"

With the constantly development of elevator technology, the impact of elevator weighing device on elevator performance can not be neglected. The requirement of elevator for weighing devices with high accuracy, high reliability and multi functions becomes extremely urgent. Presently, the progress of sensor technology and microcomputer is

Take EWD-LG-SJ3 as example: system installing position; sensor EWD-RLG-SJ3 Installed at rope hitch in machineroom

ceaseless. With the adoption of highly accurate intelligent "tension" or "load" and "stress" sensors, the electric signal produced by elevator car load changing is tested and inspected. System sensor installed at the traction rope hitch: Type "EWD-LG-SJ3": With the adoption of serial communication technology, the signal can be transmitted remotely, highly accurately without loss.; Type "EWD-RLG-SJ3": There is an 8-meter-long signal transmitting cable with the sensor. And the single-chip built-in the controller may do scientific calculations fulfilling the aim of weighing the effective load in elevator car.

3 Illustration of the Appearance of Controller:

Note: ①Hereinafter, Pj1.1 means the 1st place of Pj1 wiring port, successively analogizing. Its arrangement in the control is from left to right. ②The size of the whole set is shown in section 13, chapter 19 in detail.③Terminal wiring is described in Chapter 5.

4. Illustration of the Appearance of Sensor and Install Method: (Take EWD-LG-SJ3 as an

example. And EWD-RLG-SJ3 sensor is installed in the same way)

- A, Standard "Disc" type Intelligent loading Sensor
- **(1)Installing and fitting scheme: See Fig.**[3A]

Special Explanation on the customer-made rope shackle damp: DBased on the concrete condition; (2) The distance between Line "A" and "B" in the above figure should be divided equally referring to the center of the traction force; (3) Assure to fix the sensor and its auxiliary support well with the screw sets along with the system; (4) The pull rod through hole should be larger 3~5mm than the original hole for the convenience of the movement of the pull rod. (5) The clamp thickness should not be less than 15mm.

 Technical File of EWD-LG-SJ3/RLG-SJ3 Serial Intelligent Elevator Weighing Device [User's Guide]

 B, Standard Character "£" Type Intelligent Tension Sensor (Sensor of EWD-GB)
 See Fig [3B]

C. Standard Convex Type Intelligent Stress Sensor (Sensor of EWD-GC) Just for EWD-LG-SJ3

See Fig 3C

D, Standard Character "---" Type Intelligent Load Sensor (Sensor of EWD-GD) Just for Technical File of EWD-LG-SJ3/RLG-SJ3 Serial Intelligent Elevator Weighing Device [User's Guide] EWD-RLG-SJ3 See Fig 【3D】

5 Description of the System Controller Terminals:

Being effective when selecting floor-by floor compensation methods:

- 1. If floor-by-floor compensation is unnecessary, this port is unwired; ;
- 2. Adopting fuzzy compensation, this port is unwired, refer to attached Figure[1];
- 3. Adopting "up and down leveling" compensation method, refer to attached Figure [2];
- 4. Adopting "door zone + traveling direction" compensation method, refer to attached Figure [3];
- 5. Triggering Voltage of PX.1~2, PX.3~4 is DC12~32V, the way of triggering method is decided by the manual setting of "PH"
- 6. The compensation method is differentiated by the system automatically after the wiring of PC ports is completed, and the results will be stored in parameter "P5".;
- 7. PX.5~6 is the control signal for output locking to be connected to door interlocking circuit. Note: With the adoption of landing compensation, be sure to power on the circuit.

Detailed Explanation of the Controller Terminals:

			Function				Explar	ation			
		.1	COM of J1~2 Relay		In coordination	with Pj.2	$2\sim4$ to p	roduce	1. Effect :	Be program	med
					effective logic				as"no load~	~overload"ou	ıtput
		.2	J1 Relay Output Term	inal	System Default"	J1": No	load Outp	out;	signals to	participate	in
PJ		.3	J2 Relay Output Term	inal	System Default	"J2": Ra	ted load C	Output;	elevator log	ic control	
IJ		.4	COM of J3 Relay		In coordination	with Pj.5	$5{\sim}6$ to p	roduce			
					effective logic				2. Max load		
							<u> </u>			48V/500mA	ł
	ng	.5	J3 Relay Output Termin	al	System Default	"J3":	Overload	i Dyn			
	Switching				Close Output;	((10))	0.1				
	Swi	.6	J3 Relay Output Termin	al	System Default	"J <i>3"</i> :	Overload	i Dyn			
	•1	+			Open Output;						
	ad	.7	Analog Voltage Output: 0		Being used for p	ore-torque	compensa	ation fo	or driving sys	stem	
	Analog	-	$10V; -10 \sim +10V; 0 \sim +5$								
	A	.8	COM connected to analog co	ommon							
	~		terminal of speed regulator			•					
РХ	5[+]~	6[-]	Lock output signal con connecting polarity.	trol termin	al. Be connected	in syster	n door lo	ck sign	nal circuit, p	ay attentioi	n to
			For EWD-LG-SJ3: To C	Connect PS	to the communic	ation tern	ninal of G	W1 tra	insducer		
PS/	PG		For EWD-RLG-SJ3: To	Connect P	G to the sensor al	long with	signal cat	ole			
PV			System Power Supplyin	g Terminal	: AC/DC24V /	200mA					
			Parameter P5=2	Parar	neter P5=3	Parameter	• P5=4 1	No wiri	ing: system unn	ecessary of la	nding
	1[+]~	2[-]	Down leveling signal (Signal of	Elevator entering		0	ompensatio	on;		
Р			Up leveling Sensor)	leveling zone	or door zone		2	System	may accuratel	y control ele	evator
-	3[+]~	4[-]	Up leveling signal	Elevator Up t	raveling Signal	Main floor	r signal	oor-by-flo	or compensation to	o interpolate the	dead
			(Down leveling Sensor)		0 0		w	eight floo	or error caused	by cable, rope	e and

compensation cable;
3. This terminal defaults positive skip of input signal
being effective and the enabling method of
PX3.1~2、PX3.3~4 depends on parameter "PD".
4.See attached figure for wiring.

①Absolutely don't connect the output terminals (except "PV") of this device to the external power source directly and the resulted permanent damage to the device is beyond our responsibility.

@Attention: As for the input signal of "PX" terminal, a requirement of polarity is needed, PX.1, 3 and PM.1 are "+", and the corresponding circuit voltage should be "DC 12~32V".

Installation and Adjustment

6 Schematic Diagram for System Construction and Installing Method:

① Schematic Diagram of the appearance of the whole set: Controller Section See Fig. [2]

② Sensor Section: "Disc" type See Fig. [3A]; Fig. [3B] for Character " \pm "type, Fig. [3C] for Convex type, Fig. [3D] for Character "-" type.

③ Schematic Diagram for "Disc" type load sensor installing method See Fig. [3A.1];

(4) Schematic Diagram for Character " \pm " type tension sensor installing method See Fig. [3B];

1) Option of EWD-LG-SJ3: EWD-GB intelligent sensor and EWD-GW1 remote transducer;

- 2) Option of EWD-RLG-SJ3: EWD-GB sensor
- (5) Schematic Diagram for Convex type tension sensor installing method See Fig. [3C];
- 1) Option of EWD-LG-SJ3: EWD-GC intelligent sensor and EWD-GW1 remote transducer;

2) Option of EWD-RLG-SJ3: Currently, no option.

6 Schematic Diagram for Character "—" type load sensor installing method See Fig. [3D];

1) Option of EWD-LG-SJ3: EWD-GD intelligent sensor and EWD-GW1 remote transducer;

2) Option of EWD-RLG-SJ3: EWD-GD sensor

7、 Install Method of Sensor and Controller:

① Adjust traction ropes so that the pull of each rope keeps coincident.

② A: "Disc" type sensor is installed at the place of the elevator- car-side traction rope shackle according to Fig. [3A.1] and Fig. [3A.2] with customer-made shackle clamp plate.

B: Character " \pm " type tension sensor is installed at the place of the elevator- car-side traction rope shackle according to Fig. [3B] and refer to it for more details.

C: Convex type tension sensor is installed in the middle of the car-top bearing beam according to Fig. [3C] and refer to it for more details.

D: Character "—" type load sensor is installed at the place of the elevator- car-side traction rope shackle according to Fig. [3D] with customer-made shackle clamp plate.

③ Control Section should be installed in the control cabinet placed in machineroom, being away from equipments such as the transformer, speed regulator of elevator electric control system. Under any

condition, sensor and controller should be far away from heat source.

④ It would be better not to put the connecting cable between sensor and controller in the same wire duct with dynamic power of 110V or 220V.

⑤ Connect the sensor wiring terminal to PS terminal of the control, simultaneously, connect power line to PV according to system requirement. Pay attention to the voltage level.

⁽⁶⁾ When no error is inspected, power on the system and the corresponding operation patterns will be displayed on the control.

8 Adjustment Method and Description of the System (Autotune Operation)

(1) Initialization: Selection of Compensation Method

2 Lock the dead weight of elevator car:

Let personnel leave car and car top and stop elevator at the bottom floor leveling position. Then adjusting personnel enters machineroom. When $\mathbb{K}L_{O}$ is displayed on the control, press key $\{\pi\}$ and $\{\theta\}$ simultaneously. When system displays "Pn", test and inspection is completed, and $\mathbb{K}PL$ \mathbb{H} [01] will be displayed alternatively

(4)Rated Load Autotuning Operation Mode:

2 In autotuning condition, if there is any operation failure or system abnormality.(displaying [EF]), start the autotuning of this item from the very beginning once again.

6 System adjustment under other conditions:

For following reasons, the parameters of this system need re-modifying in the way described above.

- 1) Elevator car decoration changing causes its dead weight change.
- 2) Larger unbalance appears among traction ropes.
- 3) Sensor of weighing device becomes flexible.
- 4) Overrunning at the top or at the bottom occurs.

Operation Parameters Adjustment and the Implication

9. System Operation Parameters Adjustment (Annotation: * represents for a

hexadecimal value of "0~9,A~F".)

- (1)Simultaneously press $[\pi]$ and $[\theta]$ on system control keypad to power on , this moment [PP] will be displayed aglimer, that means entering operation parameters modifying status.
- ②Release $[\pi]$ and $[\theta]$ buttons, system will display $[P^*]$ and [**] alternately. $[P^*]$ is an indication of system operation parameters; [**] is the interior data value of $[P^*]$.
- (\mathbb{B}) When displaying $[P^*]$, press [0], indication of system operation increases; press $[\pi]$, indication decreases.
- (4) When displaying [**], press $[\theta]$, data value increases; press $[\pi]$, data value decreases.
- ⑤Release buttons, system displays operation indication and configuring data alternately.
- ⁽⁶⁾To modify other configuring datum, repeat the operation in item 3, item 4, and item 5.
- $(\overline{O}At \text{ the moment when system displays } \mathbb{P}^*\mathbb{J}$, Simultaneously press $[\pi]$ and $[\theta]$, system will save modified datum for future use. This moment, system displays [Pn] for 1 second. System operation parameters modification of this time is completed.
- Example: Modify parameter PD to 03; (PX.1~2, PX.3~4 enabling for low voltage level compensation signal)
- \bigcirc Simultaneously press $[\pi]$ and $[\theta]$ on system control keypad to power on , this moment [PP] will be displayed aglimer, that means entering modifying status.
- (2)Release [π] and [θ] buttons, system will display [P0] and [**] aglimer
- $\textcircled{When displaying } \llbracket P0 \rrbracket$, press [θ] to increasing it to $\llbracket PD \rrbracket$;
- Release button [θ] , system alternately displays $\llbracket PD \rrbracket$ and $\llbracket ** \rrbracket$.
- (5)When displaying $[]^{**}]$, press $[\pi]$ or $[\theta]$ to regulate its value as []03].

 $\textcircled{\sc {B}}$ Release button, system alternately displays $\llbracket PD \rrbracket$ and $\llbracket 03 \rrbracket$.

 $(\overline{O}At \text{ the moment when system displays } [PH], Simultaneously press [<math>\pi$] and [θ], system will save modified datum for future use. This moment, system displays [Pn] for 1 second. System operation parameters modification is completed.

10. Implication of parameter P: Normally, it is unnecessary to modify parameter after "P0". System may

automatically modify them in the course of Autotuning.

Setting	Explanation	Default Setting	Normal Value
00	Normal Operation (Automatically modify by system after autotune.)		
01	Sensor positioning, system autotuning	01	00
09	Options for dealing with abnormality when Selecting " \pm " type intelligent sensor.	(Sensor Positioning)	System Auto
0A	Forcibly set system settings as default values		Modifying

① Directions of Parameter	P0 [System O	peration Mode]:
---------------------------	--------------	-----------------

② Directions of Parameter P1 [System Rated Load Setting Mode]:

Setting	Explanation	Default Setting	Normal Value
	01— Select"100% Rated load, floor by floor" Autotune		
01/02或	02— Select"20% Rated load, floor by floor" Autotune;	01	
05~55	**-Select rated load setting mode(Not Recommended)Example:	(Rated load Autotuning)	
×100Kg	"10" means rated load of 1000Kg. There is a certain error in this		
	method.		
	Note: This mode is just for type "D" sensor.		

3 Directions of Parameter P2 [The Highest Elevator Landing Setting Mode](Automatically modify them in the course of Autotuning by system):

Setting	Explanation	Default Setting	Normal Value
01~32	Setting elevator landings: Selection of 01	99 (landings)	System automatically modifies
01 32	means ceasing floor compensation function.	99 (lanungs)	them in the course of Autotuning.

Input signal of PX is ineffective this time.		

(Directions of Parameter P3 [Setting Elevator Shutdown at Main Floor]:

Setting	Explanation		Default Setting	Normal
	Higher Bits	Lower Bits		Value
$01 \sim 19$	0—"PX.5~6" effective for Low	Setting elevator main floor.	01(landing)	System auto
	Voltage Level;	Example: Selecting 2 means	Effective when switched	modification
	1—"PX.5~6" effective for High	there is a basement floor for	on, and with the	in fuzzy
	Voltage Level;	this elevator.	basement floor is main	compensation
	Example: Selecting 12 means"PX5~6" effective for Low Voltage		floor.	autotuning
	Level and there is a basement floor	for this elevator.		

(5) Directions of Parameter P4 [Time Parameter for Floor-by-floor Compensation]:

Setting	Explana	tion	Default Setting	Normal Value
	Higher Bits	Lower Bits	42	
00~99	Anti-interference protection time of each	Control Factor of fuzzy	Anti-interference protection time of	
	floor : 0~9×0.5 Second;	compensation: 0~3	each floor is 2.0 seconds; Control	
	0-Not Enabling protection time		Factor of fuzzy compensation is 2.	

6 Directions of Parameter P5 [Selection of Floor compensation input signal function] (Automatically modify in the period of Autotuning by system):

Setting		Explanation					Normal Value
	00	01	02	03	04	Setting	
	Allow auto deciding	Disable	up/down leveling step	Door zone + running	Fuzzy	00	Auto modified by
	compensation method		counting control	direction Control	compensation	(Auto Measuring)	system in the period

00~03	Notes:	1. See Section 1, Chapter 8 and attached drawings for more details;	of 〖Lo〗displaying.
		2. Elevator of serial communication control may use "03" or "04' operation method.	
		Running direction Signal may be parallel connected to the forward rotation command	
		signal of the SPECIFIED inverter.	

⑦ Directions of Parameter P6 [Logic condition Setting Relay"J1", "J2", "J3"]:

Setting			Explanation	n		Default Setting	Normal Value
	Higher Bits		Lo	wer Bits			
	0 Selecting 0~10V	Contact Status	J3	J2	J 1	20	
	1	0	Dynamic Close	Dynamic Close	Dynamic Close	(Relay Dynamic	
00~17	Selecting 10~0V	1	Dynamic Close	Dynamic Close	Dynamic Open	Close output,	
	2	2	Dynamic Close	Dynamic Open	Dynamic Close	analog output of $0 \sim 10V$ is	
	Selecting -10~10V	3	Dynamic Close	Dynamic Open	Dynamic Open	effective)	
	Selecting +10~-10V	4	Dynamic Open	Dynamic Close	Dynamic Close	checuve)	
	4	5	Dynamic Open	Dynamic Close	Dynamic Open	-	
	Selecting 0~-+5V	6 7	Dynamic Open Dynamic Open	Dynamic Open Dynamic Open	Dynamic Close Dynamic Open		

(a) Directions of Parameter P7 [Setting Relay"J1"Operation Range]:

Setting	Explanation	Default Setting	Normal Value
	When Load \geq Rated load \times P7%, "J1" signal is output.		
	00~99: Actuating for 0~99% rated load		
00~99	A0~A9: Actuating for 100~109% rated load	05	
A0~A9	b0~b9: Actuating for 110~119% rated load	Setting J1: actuating	
b0~b9	C0~C9: Actuating for 120~129% rated load	for 05% Rated Load	

C0~C9	d0~0	d9: Actuating for 130~139% rated load	
		E9: Actuating for 140~149% rated load	
E0~E9	F0~.	F9: Actuating for 150~159% rated load	
$F0^{\sim}F9$	le	P7=80: For effective load of 1T, system actuates at 800Kg.	
	Example	P7=A5: For effective load of 1T, system actuates at1050Kg.	
	Ex	P7=C5: For effective load of 1T, system actuates at 1250Kg.	

(9) Directions of Parameter **P8** [Setting Relay"**J2**"Operation Range]:

Setting	Explanation	Default Setting	Normal Value
The same as P7	(/Ten : 1	A0 Setting"J2", system actuates at 100% rated load	

Directions of Parameter **P9** [Setting Relay"**J3**"Operation Range]:

Setting	Explanation	Default Setting	Normal Value
	The same as P7:	A5	
The same as P7	When load≥Rated Load×P9%, output	Setting"J3", system actuates at	
	"J3"signal	105% rated load	

a Directions of Parameter PA [No-Load Auto Zeroing Time Interval]:

Setting	Explanation	Default	Normal Value
		Setting	
00~96	When it reaches the set time, system will begin the operation of no load zeroing		
	automatically.	00(Disable)	
(Hours)	01—— System disables the function of no load auto zeroing.		
	12 \sim 96—After system powered on (for 12 \sim 96 hours), it begins the operation of		
	inspecting load detaining time, a part of no load zeroing operation.		

Setting	Explanation	Default Setting	Normal Value
10~90 (Minutes)	After auto zeroing time is reached, system load doesn't change in this period and system will allow the beginning of No-Load Auto Zeroing operation.	30(Minutes)	

2 Directions of Parameter PB [Detaining Time of No-Load Auto Zeroing]:

Directions of Parameter PC [No load Auto Zeroing Error Range]:

Setting	Explanation	Default Setting	Normal Value
	When conditions of both (7) and (8) being satisfied and the ratio	05%	
03~20	of present load to the absolute value of original no load is larger than this	(No load Error larger than	
(%)	setting, system begins No load Auto Zeroing operation immediately.	5%, System)	

A Directions of Parameter PD [Characteristics of Compensation Terminals]:

Setting		Expl	Default Setting	Normal Value	
		PX.1~2	PX.3~4	0.0	
00~03	00	Effective for High Voltage Level	Effective for High Voltage Level	00 PX.1~2, PX.3~4	
00~03	01	Effective for Low Voltage Level	Effective for High Voltage Level		
	02	Effective for High Voltage Level	Effective for Low Voltage Level	Effective for High Voltage	
	03	Effective for Low Voltage Level	Effective for Low Voltage Level	Level	

 \mathfrak{B} Directions of Parameter **PE** [Selection of Sensor Parameters]:

Setting	Explanation			Default Setting	Normal Value		
	D7~D4	D3	D2	D1	D0	84	
80~90	Sensor Gain Adjustment			0-Standard Sensor	Standard Sensor, 2		
		$0 \sim 3$ gain-Levels for			1-Modification of "Convex" type stress	gain-Levels for	
	selection			sensor picking-up abnormality. selection			
	Recomm	Recommendation: Normally, users don't need to adjust this parameter. Any dissidence, contact with			ence, contact with		

	the	manufacturer	directly.
--	-----	--------------	-----------

Attentions: ① When selecting not indicated settings, system will not normally operate.

② No load auto zeroing parameters PA, PB and PC should be used cautiously because of the cause variety of elevator no load point drifting. It is recommended for the user to allow or forbid this function according the concrete conditions.

③ Even if No load auto zeroing operation enabled, in the course of elevator periodical maintenance, autotuning operation of this system should be redone without exception.

Explanation of Displaying Code:

11. System Normal Operation Code:

[J0]	$\llbracket \mathbf{J1} brace$	[J2]	[J3]	
No Relay Output	RelayJ1 Output	Relay J2 Output	RelayJ2 Output	
	Default 5% of Rated Load	Default 90% of Rated Load	Default 105% of Rated Load	

 Displaying "HJXXXXX" when pressing π button indicates present car effective load. For instance, displaying "HJ0520 "indicates the load of 0520kg.

 Displaying ".*. *. when pressing [θ] button or in the course of landing changing indicates present system compensating landing. Adjusting Personnel may judge whether system compensating landing tracing is right or not by its numerical value. Note: This option is just for floor-by floor compensation method.

3. Displaying "0.0." in fuzzy compensation indicates compensation is effective. Displaying "0.1." indicates elevator entering modifying zone.

12. Code for Other Operation and Failures

	Display Code	Indication	Solution
1	FY	System Startup	

	Display Code]	Indication		Solution
2	PC	Sensor Resetting			
3	PP	Get into the	e status of operation	n par	rameters modification
4	PL	Autotuning N	lo load parameters	(64)	II Disalaning indiante generation status a slimmar
5	PH	Autotuning R	ated load parameters		ll Displaying indicates preparation status, aglimmer playing indicates the end of inspection)
6	LL	Installation	Too big Positioning		Sensor having no load
7	LH	and	Too small Positioning		Sensor overload
8	Lo	positioning	Accurately Position	n	
9	LP		Interior Auto Corre	ectio	n
10	LY		Forcibly skip sense	or in	terior auto correction
11	P*	System Co	System Configuration Indication		
12	Pn	Saved			
13	EA	Saving Fail	lure		Modifying operation parameters again
14	EJ	Without th	is system setting		Check system settings
15	EH	Applied Over	rflowing Pressure		Sensor pressure may beyond its withstanding range
16	EL	Applied Insufficient Pressure			Sensor being not pressed
17	EE	No landing of this code			Make certain PC signals abnormality or no load autotuning normal or not
18	EF	Memorizing abnormally			Repeat this operation.
19	ES	Communic	ation Failure		Carefully check wiring between sensor and control.

How to do?

13, Brief Analysis of Other Conditions:

(1)Bad system Operation Stability with the main indication of large output fluctuation in the condition of fixed load

and elevator motionless?

Check if PV power supply source fulfils system requirements?

(2)After long-term of operation, system no load zeroing point appears larger deviation?

May be caused by the reason described in section 8, chapter 8. Set system Autotuning mode to calibrate again, or startup parameter " $PA \neq 0$ " to realize the function of system no load auto zeroing.

(3)System displaying failure code $\mathbb{Z}EE\mathbb{Z}$?

Incorrect Input signal of terminal PX on the control or unreasonably setting.

- (4)When selecting floor indication step counting control method, floor-by-floor compensation consistency is bad?
 Whether up or down landing signals or leveling signal is normally wiring, Setting of parameter P5 is reasonable?
- (5)Traveling Up and down with the same load and stopping at the same floor, but the weighing result is different?

①Lift rope pull is not symmetrical, adjust please.

②Elevator guide shoes are too tightened, running friction is large. It is recommended to adjust or modify relevant mechanical part to make it move flexible, then operate the system to autotune again.

(6)System output signal doesn't change linearly along with load?

Maybe system sensor is damaged.

- (7)How to descry present effective load of elevator car?
 - (*D* In the period of system normal operation, press button [π]. This moment, system displays [HJ] → [**] → [**].For example : displaying [HJ] → [09] → [50] indicates a car with rated load of 1000 Kg presently bearing an effective load of 950Kg.
 - ② If elevator effective load is not 1000 Kg, it may be decided after system autotuning operation is finished by modifying parameter "P1".
 - ③ Because of various impacts from outer environment, displayed data may fluctuate in a small scope.

(8)When elevator is motionless, weighing signal is normal. But in the course of door opening, it is abnormal? Elevator door operation system causes relative car weight offset. It may be controlled by adopting door opening/closing relay output signals+ door lock signal jointly participating system Pj4 locking.

(9) How to determine car dead weight(This operation is effective for type A and D sensor and "EWD-LG-SJ3#" type)?

- a. After modified parameter "P0=11" is saved, this moment, system displays $\llbracket HP \rrbracket \to \llbracket ** \rrbracket \to \llbracket ** \rrbracket$; For example: displaying $\llbracket HP \rrbracket \to \llbracket 15 \rrbracket \to \llbracket 10 \rrbracket$ means car dead weight of 1510Kg.
- b. Because of various impacts from outer environment, displayed data may fluctuate in a small scope. Users may adopt algorithm of average value of several times to deal with inspection results. Meanwhile, inspection accuracy may be influenced by self-made traction rope clamp and traction ropes tension equality.
- c. Press $[\pi]$ or $[\theta]$ ad arbitrium, system may reset to original setting.

(10)During system operation, analog output is abnormal, repeatedly resetting or abnormal coordination with speed regulator? May be caused by crossing and interfering system power source. Select another set of power source to supply power to system, or equip AC/DC 24V/300mA exterior power source to supply power.

14. How to Repeat doing Autotune operation for system?

- Method 1: Simultaneously press [π] and [θ] on system control panel to power on. This moment, system aglimmer displays [PP] and [P-].Keep 10 seconds, system will display [Pn]. On that occasion, all operation parameters reset to default settings.
- **Method 2:** Modifying parameter P0=0A will reset system immediately to default status. But for users with specified code, it is necessary to modify parameter P0 as appointed code. Detailed operation is described in chapter 9.

15. How to adopt 20% rated load for rated load autotune?

After system displaying [Lo], modify parameter"P1=02".Do no load autotuning operation as described in chapter 6. In the period of displaying [PH], load elevator car with a weight equal to 20% of rated load to do rated load autotuning operation. When operation is finished, [L1] is displayed.

16. How to do "Weight Setting" autotune for EWD-GA type sensor? (Just limited to

EWD-GD. Affected by mechanical system, having certain error)

After system displaying [Lo], modify parameter "P1=elevator effective load" (For 1ton, input10; 3 tons, input 30). Do no load autotuning operation as described in chapter 5. When operation is finished, [J0] is displayed.

17. How to get the version code of the product?

After power off, press [0] to supply power. System displays [1.0] indicating the corresponding User's Guide of this product being Version"V1.0".

System Features

18、 Main Characteristic:

- (1) Selecting super thin "Disc" type intelligent load sensor, it is capable of directly inspecting elevator car load change unnecessary to change the pull rod of traction rope shackle;
- (2) Weighing range is wide (effective load of 500Kg~5500 Kg), high-accuracy position, intelligent temperature compensation.
- (3) Electric property complies with the requirements of "International Electro-technical Commission (IEC) "Standard.

- (4) Inner core consists of highly accurate load sensor and high performance single-chip micro-computer. All operation parameters can be set on field.
- (5) Auto on-site measuring of various compensation methods, boosting requirement of high accuracy weighing signal of elevator system.
- (6) System may do scientific calculation according to mathematical equations with the function of no-load auto zeroing, automatically modifying measuring error.
- (7) Directly displaying present effective load. Some types may directly measure dead weight of elevator car for the benefit of users.
- (8) Field adjustment may select 20% or 100% rate load autotuning method or load setting method, being easily adjusted and operated.
- (9) Independent development of the method of *Programmable Output Signal Control* is suitable for all the requirement of traction elevators with various kinds of fixed car platform.
- (10) Having the function of operation parameters auto modification, auto accommodation to multi methods of intelligent floor compensation function, being applicable to traction elevators of less than 30 landings.
- (1) Distinctive design structure of sensor+ controller, only 2 connecting wires between sensor and controller making wiring simply.
- (12) The whole shoot starts from users' point of view, easy installation and adjustment, decreasing users' additional cost in use, high ratio of performance to price.

19、 Technical Specifications:

1.	Application	Being applicable to all traction elevators fixed car platform (less than 60 landings)
		with the load of 500 kg \sim 5000 kg .
2.	Floor	Auto accommodating to the following compensation methods: $$ Up and Down leveling; $$ Up

cun	incar r ne or i		D-D0-005/KD0-005 D	erial intelligent Elevator weighing Device [User's Guide]	
	Compensation	1:	command + door zone; ③Fuzzy and intelligent.		
3.	Sensitivity		Elevator Rated Capacity/200 (Example: The rated capacity is 1000 kg, and the		
			sensitivity is 5 kg) [Thi	s data may be affected by elevator mechanical performance.]	
4.	System Error		≤0.5%(5~40°C)	· · · · ·	
5.	Non-Linearity	,	≤0.5%		
6.	Compensation	ı	The method of circuit parallel connection is applicable to the signal source syst of DC12~32V.Also, the interior fault of this system doesn't affect the origi operation mode of elevator.		
7.	Output Mode	R el ay	Programmable universal signal	 3-channel programmable output modes are: No load, light load, semi full load, heavy load, rated load, and overload (customer may set the changing range freely). Each channel can be programmed as dynamic Close or Open contact. 3Contact Capacity: DC/AC 48V/100mA 	
			Analogue quantity	Overall Compensation Range $0 \sim 10V$, $-10V \sim +10V$, $0V \sim +5V$	
8.	Ambient Tem	pei	ature	Temperature: -20∼55℃	
9.	Relative Humi	-		20%~90%RH	
10.	• Reaction Time <= 0.5Second, The communication dis		≤0.5Second, The communicatio	n distance between the intelligent and the control is 0~400m.	
11.	· Power Supply: AC/DC24(±10%)V / 200mA		A		
12.	Installation Place Sensor Section: At the place of traction rope shackle Controller Section: Control Cabinet in machineroom. See the figure 3 for installing dimension.			*	
13.	Overall Size:	Overall Size: Sensor Section: See the figure [3]; Controller Section: 115×90×40 mm ³			

: The intension exceeding the limit parameters listed above may result in the abnormality or permanent damage to the system.

Promise

(1)If this system appears any quality problem of product itself in 1 year after delivery, it will be replaced freely (damage of the product seal will not be dealt with) °.

(2)For any requirement of special functions, make it out by mail.

(3)Any system abnormality in adjustment or operation, please contact our company directly.

Others:

1.Packing List:	Type A: Intelligent "Disc" type load sensor	1Set	Type B : Intelligent Ch "∓" tension sensor	aracter 1set
	Sensor Auxiliary Support	1	Type C: Intelligent stress	sensor 1set
	M10×35mm Fastening	6 sets		
	Screw sets			
	Type D: Intelligent Character	1 set _{EWD} -	-LG-SJ3/EWD-RLG-SJ3	1
	"—"load sensor	cont	troller	
	M10×35mm Fastening Screw	2 sets	$\Phi4{\times}40$ mm Fastening Screw	sets 4set
	sets			S
	EWD-GW1:Remote tranducer (J	lust for EWD	D-LG-SJ3) 1se	et
	M4×20mm Fastening Screw		2 se	ets
	User's Guide 1	copy		
2.Address	book: :			
Xi'AN EXO	CELLENT ELECTROMECHANICAL C	O.,LTD		

2	: (029)88416613, 18092639750	🖅 : 7D, Block A, Olympic Building,
		14th Chang An North Road,
		Xi'an, Shaanxi,China
	: (029)86698830	⊠ <u>:</u> 710068

Att. Fig [1]: Wiring Method of Terminal PX in the mode of parameter "P5=4" (Auto accommodating fuzzy floor compensation)

Recommended Application Range of this mode: All elevators with better mechanical installation characteristic.

Notes: 1. Directly parallel connect PX.3~4 and PX.5~6 to corresponding electric circuit. If user selects "mid landing" position signal, more accurate compensation effect may be received.

2. PX.3~4 must be connected to corresponding signal circuit. In fuzzy compensation autotuning, system auto modifies higher bits setting of parameter P3 to determine the enabling method of this signal(System default is that in the period elevator stops at main floor, "main floor position signal switch" is in closed condition.).

3. Voltage of terminal COM should be in the range of "DC12~32V" .

Recommended Application Range of this mode: Elevator having "up leveling" and "down leveling" input signals or allowing to add leveling device in hoistway;

Notes: 1.Directly parallel connect PX.1~2, PX.3~4 and PX.5~6to corresponding electric circuit;

2.PX.1~2 and PX.3~4must be connected to corresponding leveling signal circuit. User may select Close Enabling or Open Enabling according to concrete conditions. Please notice manual setting parameter PJ(system default is that in the period elevator leveling, "leveling signal switch" is in Closed condition.).
 3.Voltage of terminal COM should be in the range of "DC12~32V".

Recommended Application Range of this mode: Elevator having "Door zone sensor" and "Upward running command" signals. **Notes:** 1.Directly parallel connect PX.1~2, PX.3~4 and PX.5~6 to corresponding electric circuit. Meanwhile, pay attention to the" upward

running " signal picking-up points "A" and "B".

- 2.PX.1~2 must be connected to door zone signal circuit. (system default is that in the period elevator leveling, "door zone signal switch" is in Closed condition.), PX.3~4 must be connected to upward traveling command signal circuit. (system default is that in the period of upward traveling, circuit "PX.3~4" exists an operation voltage of "DC12~32V"). User may select Close enabling or Open enabling according to concrete condition. Pay attention to manual setting of parameter PJ.
- 3.Voltage of terminal COM should be in the range of "DC12~32V"